If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x+x^2=398
We move all terms to the left:
5x+x^2-(398)=0
a = 1; b = 5; c = -398;
Δ = b2-4ac
Δ = 52-4·1·(-398)
Δ = 1617
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1617}=\sqrt{49*33}=\sqrt{49}*\sqrt{33}=7\sqrt{33}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7\sqrt{33}}{2*1}=\frac{-5-7\sqrt{33}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7\sqrt{33}}{2*1}=\frac{-5+7\sqrt{33}}{2} $
| 16x+2+19x-2=105 | | 2x-10+x+14=180 | | 7x+5=8(x+2) | | 10.5q=31;q=13 | | −(7-2x)+7=-7 | | 2a-3=5a+12 | | 162=x^2 | | 1080=5x+500 | | 162=x^ | | 10x+120x-6=180 | | 4p-12=32 | | 1225=x^2 | | -5(-1-k)=2(4k-3)-2k | | 6-6x+x=47/12 | | 84=x^2 | | 10x+2x^2=796 | | 6p-18=42 | | 2(3x-4)+6=54 | | 14/x=x/6 | | 1080=6x+375 | | 2x+5=19 | | 7x+6-x=-12 | | 5x+7-3x=-x+1+3x | | 1080=6x+750 | | 480=x^2 | | 4=t/2 | | 2m+1.5=3m-11.7 | | 12=-2(5x+6) | | 4(b-2)=18 | | 1080=7x+1260 | | 1080=7x+1050 | | 62.3=7m+18.2 |